No : 5 Title : ‘ Proper Restriction Semigroups – Semidirect Products and W - Products ’ Author ( S )
نویسندگان
چکیده
Fountain and Gomes have shown that any proper left ample semigroup embeds into a so-calledW -product, which is a subsemigroup of a reversed semidirect product T ⋉ Y of a semilattice Y by a monoid T , where the action of T on Y is injective with images of the action being order ideals of Y. Proper left ample semigroups are proper left restriction, the latter forming a much wider class. The aim of this paper is to give necessary and sufficient conditions on a proper left restriction semigroup such that it embeds into a W -product. We also examine the complex relationship between W -products and semidirect products of the form Y ⋊ T .
منابع مشابه
Proper Restriction Semigroups – Semidirect Products and W -products
Fountain and Gomes have shown that any proper left ample semigroup embeds into a so-called W -product, which is a subsemigroup of a reverse semidirect product T ⋉ Y of a semilattice Y by a monoid T , where the action of T on Y is injective with images of the action being order ideals of Y. Proper left ample semigroups are proper left restriction, the latter forming a much wider class. The aim o...
متن کاملSemidirect Products of Regular Semigroups
Within the usual semidirect product S ∗ T of regular semigroups S and T lies the set Reg (S ∗ T ) of its regular elements. Whenever S or T is completely simple, Reg (S ∗T ) is a (regular) subsemigroup. It is this ‘product’ that is the theme of the paper. It is best studied within the framework of existence (or e-) varieties of regular semigroups. Given two such classes, U and V, the e-variety U...
متن کاملSemidirect products of ordered semigroups
We introduce semidirect and wreath products of finite ordered semigroups and extend some standard decomposition results to this case.
متن کاملExtensions and Covers for Semigroups Whose Idempotents Form a Left Regular Band
Proper extensions that are “injective on L-related idempotents” of R-unipotent semigroups, and much more generally of the class of generalised left restriction semigroups possessing the ample and congruence conditions, referred to here as glrac semigroups, are described as certain subalgebras of a λ-semidirect product of a left regular band by an R-unipotent or by a glrac semigroup, respectivel...
متن کاملRees Matrix Covers and Semidirect Products of Regular Semigroups
In a recent paper, P.G. Trotter and the author introduced a \regular" semidirect product UV of e-varieties U and V. Among several speciic situations investigated there was the case V = RZ, the e-variety of right zero semigroups. Applying a covering theorem of McAlister, it was shown there that in several important cases (for instance for the e-variety of inverse semigroups), U RZ is precisely t...
متن کامل